Building models for the Ashrae prediction challenge.
Defining wether to process the test set (warning, this alone takes 12+ minutes) and submit the results to kaggel (you will need your credentials set up).
do_test = True
do_submit = False
Defining where the csv files are located
loading.DATA_PATH = Path("../data")
!kaggle competitions download -c ashrae-energy-prediction -p {data_path}
!kaggle competitions leaderboard -c ashrae-energy-prediction -p {data_path} --download
%%time
loading.N_TRAIN = 100_000
loading.N_TEST = 100_000
%%time
csvs = loading.get_csvs()
csvs
%%time
ashrae_data = loading.load_all()
df_leaderboard = pd.read_csv(csvs['public-leaderboard'], parse_dates=['SubmissionDate'])
df_leaderboard.head()
%%time
dis = leaderboard.get_leaderboard_distribution(df_leaderboard)
dis['Score'].describe(percentiles=[.05, .1, .25, .5, .75, .95])
%%time
processor = preprocessing.Processor()
tfms_config = {
'add_time_features':{},
'add_weather_features':{'fix_time_offset':True,
'add_na_indicators':True,
'impute_nas':True},
'add_building_features':{},
}
df, var_names = processor(ashrae_data['meter_train'], tfms_configs=tfms_config,
df_weather=ashrae_data['weather_train'],
df_building=ashrae_data['building'])
if do_test:
%time
df_test, _ = processor(ashrae_data['meter_test'], tfms_configs=tfms_config,
df_weather=ashrae_data['weather_test'],
df_building=ashrae_data['building'])
df_test = preprocessing.align_test(df, var_names, df_test)
%%time
n = len(df)
if False: # per building_id and meter sampling
n_sample_per_bid = 500
replace = True
df = (df.groupby(['building_id', 'meter'])
.sample(n=n_sample_per_bid, replace=replace))
if False: # general sampling
frac_samples = .05
replace = False
df = (df.sample(frac=frac_samples, replace=replace))
print(f'using {len(df)} samples = {len(df)/n*100:.2f} %')
%%time
# t_train = pd.read_parquet(data_path/'t_train.parquet')
t_train = None
%time
#split_kind = 'random'
#split_kind = 'time'
# split_kind = 'fix_time'
split_kind = 'time_split_day'
train_frac = .9
splits = preprocessing.split_dataset(df, split_kind=split_kind, train_frac=train_frac,
t_train=t_train)
print(f'sets {len(splits)}, train {len(splits[0])} = {len(splits[0])/len(df):.4f}, valid {len(splits[1])} = {len(splits[1])/len(df):.4f}')
%%time
procs = [Categorify, FillMissing, Normalize]
to = feature_testing.get_tabular_object(df,
var_names,
splits=splits,
procs=procs)
%%time
train_bs = 1000
val_bs = 1000
dls = to.dataloaders(bs=train_bs, val_bs=val_bs)
%%time
test_bs = 1000
if do_test:
test_dl = dls.test_dl(df_test, bs=test_bs)
y_range = (-.1, 17)
layers = [50, 20]
embed_p = 0.
ps = [.0 for _ in layers]
config = tabular_config(embed_p=embed_p, ps=ps)
learn = tabular_learner(dls, y_range=y_range,
layers=layers, n_out=1,
config=config,
loss_func=modelling.evaluate_torch)
run = -1 # a counter for `fit_one_cycle` executions
%%time
learn.fit_one_cycle(5, lr_max=1e-2)
learn.recorder.plot_loss()
%%time
y_valid_pred, y_valid_true = learn.get_preds()
y_valid_pred, y_valid_true = modelling.cnr(y_valid_pred), modelling.cnr(y_valid_true)
TODO: running the below cell produces an 'IndexError: index out of range in self' thing for learn.get_preds(dl=test_dl)
although the code seems identical to the one in all_meters_one_model.ipynb
and it runs there (well at least it did ... testing now shows that also broke for some reason).
%%time
if do_test:
y_test_pred, _ = learn.get_preds(dl=test_dl)
y_test_pred = modelling.cnr(y_test_pred)
nb_score = modelling.evaluate_torch(torch.tensor(y_valid_true),
torch.tensor(y_valid_pred)).item()
print(f'fastai loss {nb_score:.4f}')
feature_testing.hist_plot_preds(modelling.pick_random(y_valid_true, 50),
modelling.pick_random(y_valid_pred, 50),
label0='truth', label1='prediction')
if do_test:
feature_testing.hist_plot_preds(modelling.pick_random(y_valid_true),
modelling.pick_random(y_test_pred),
label0='truth (validation)',
label1='prediction (test set)').show()
%%time
miss_cols = [v for v in ['building_id', 'meter','timestamp'] if v not in to.valid.xs.columns]
tmp = to.valid.xs.join(df.loc[:,miss_cols]) if len(miss_cols)>0 else to.valid.xs
bwt = feature_testing.BoldlyWrongTimeseries(tmp, y_valid_true, y_valid_pred)
bwt.run_boldly()
%%time
if do_test and do_submit:
y_test_pred_original = torch.exp(tensor(y_test_pred)) - 1
y_out = pd.DataFrame(cnr(y_test_pred_original),
columns=['meter_reading'],
index=df_test.index)
display(y_out.head())
assert len(y_out) == 41697600
%%time
if do_submit:
y_out.to_csv(data_path/'my_submission.csv')
message = ['lightgbm', '500 obs/bid', '100 rounds', '42 leaves', 'lr .5', f'nb score {nb_score:.4f}']
# message = ['tabular_learner', '500 obs/bid', 'all features', f'layers {layers}, embed_p .1, ps [.1,.1,.1]', f'nb score {nb_score:.4f}']
message = ' + '.join(message)
message
if do_test and do_submit:
print('Submitting...')
!kaggle competitions submit -c ashrae-energy-prediction -f '{data_path}/my_submission.csv' -m '{message}'